Online Learned Discriminative Part-Based Appearance Models for Multi-human Tracking
نویسندگان
چکیده
We introduce an online learning approach to produce discriminative part-based appearance models (DPAMs) for tracking multiple humans in real scenes by incorporating association based and category free tracking methods. Detection responses are gradually associated into tracklets in multiple levels to produce final tracks. Unlike most previous multi-target tracking approaches which do not explicitly consider occlusions in appearance modeling, we introduce a part based model that explicitly finds unoccluded parts by occlusion reasoning in each frame, so that occluded parts are removed in appearance modeling. Then DPAMs for each tracklet is online learned to distinguish a tracklet with others as well as the background, and is further used in a conservative category free tracking approach to partially overcome the missed detection problem as well as to reduce difficulties in tracklet associations under long gaps. We evaluate our approach on three public data sets, and show significant improvements compared with state-of-art methods.
منابع مشابه
Multi-Target Tracking by Learning Class-Specific and Instance-Specific Cues
This paper proposes a novel particle filtering framework for multi-target tracking by using online learned class-specific and instancespecific cues, called Data-Driven Particle Filtering (DDPF). The learned cues include an online learned geometrical model for excluding detection outliers that violate geometrical constraints, global pose estimators shared by all targets for particle refinement, ...
متن کاملVisual tracking via shallow and deep collaborative model
In this paper, we propose a robust tracking method based on the collaboration of a generative model and a discriminative classifier, where features are learned by shallow and deep architectures, respectively. For the generative model, we introduce a block-based incremental learning scheme, in which a local binary mask is constructed to deal with occlusion. The similarity degrees between the loc...
متن کاملTemporal dynamic appearance modeling for online multi-person tracking
Robust online multi-person tracking requires the correct associations of online detection responses with existing trajectories. We address this problem by developing a novel appearance modeling approach to provide accurate appearance affinities to guide data association. In contrast to most existing algorithms that only consider the spatial structure of human appearances, we exploit the tempora...
متن کاملDiscriminative Tracking by Metric Learning
We present a discriminative model that casts appearance modeling and visual matching into a single objective for visual tracking. Most previous discriminative models for visual tracking are formulated as supervised learning of binary classifiers. The continuous output of the classification function is then utilized as the cost function for visual tracking. This may be less desirable since the f...
متن کاملA parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos
Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012